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Will the Pedestrian Cross?
A Study on Pedestrian Path Prediction

Christoph G. Keller and Dariu M. Gavrila

Abstract—Future vehicle systems for active pedestrian safety
will not only require a high recognition performance but also
an accurate analysis of the developing traffic situation. In this
paper, we present a study on pedestrian path prediction and
action classification at short subsecond time intervals. We consider
four representative approaches: two novel approaches (based on
Gaussian process dynamical models and probabilistic hierarchical
trajectory matching) that use augmented features derived from
dense optical flow and two approaches as baseline that use po-
sitional information only (a Kalman filter and its extension to
interacting multiple models). In experiments using stereo vision
data obtained from a vehicle, we investigate the accuracy of path
prediction and action classification at various time horizons, the
effect of various errors (image localization, vehicle egomotion esti-
mation), and the benefit of the proposed approaches. The scenario
of interest is that of a crossing pedestrian, who might stop or
continue walking at the road curbside. Results indicate similar
performance of the four approaches on walking motion, with
near-linear dynamics. During stopping, however, the two newly
proposed approaches, with nonlinear and/or higher order models
and augmented motion features, achieve a more accurate position
prediction of 10–50 cm at a time horizon of 0–0.77 s around the
stopping event.

Index Terms—Computer vision, pedestrian safety, prediction
methods.

I. INTRODUCTION

PREDICTING the path of a pedestrian is important in sev-
eral application contexts, such as robot control in human-

inhabited environments and driver assistance systems for
improved traffic safety. In this paper, we consider the intelli-
gent vehicles context, in which strong gains have been made
over the years in improving computer-vision-based pedestrian
recognition performance. This has culminated in the first active
pedestrian safety systems reaching the market. For example,
our company Daimler has recently introduced an innovative
stereo-vision-based pedestrian system in its 2013 Mercedes-
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Fig. 1. Pedestrian path prediction and action classification. Where exactly will
the pedestrian be in the immediate future? Will the pedestrian cross?

Benz E- and S-Class models, which incorporates automatic full
emergency braking.

A sophisticated situation assessment requires a precise es-
timation of the current and future positions of the pedestrian
with respect to the moving vehicle. A deviation of, for example,
30 cm in the estimated lateral position of the pedestrian can
make all the difference between a “correct” and an “incorrect”
maneuver initiation. One major challenge is the highly dy-
namic behavior of pedestrians, which can change their walking
direction in an instance, or start/stop walking abruptly. As a
consequence, prediction horizons for active pedestrian systems
are typically short; even so, small performance improvements
can produce tangible benefits. For example, accident analy-
sis [1] shows that being able to initiate emergency braking
0.16 s (four frames at 25 Hz) earlier, at a time to collision
of 0.66 s, reduces the chance of incurring injury requiring a
hospital stay from 50% to 35%, given an initial vehicle speed of
50 km/h.

This paper focuses on the task of predicting the position of
pedestrians walking toward the road curbside, when viewed
from an approaching vehicle. A secondary question is whether
the pedestrian will cross or stop. The setting in Fig. 1 is
inspired by an earlier human factors study by Schmidt and
Färber [2], which had several test participants watch videos of
pedestrians walking toward the curbside and decide whether the
pedestrians would stop or cross, at various time instants. The
study varied the amount of visual information provided to
the test participants and examined its effect on their classifica-
tion performance. In the baseline case, the pedestrian was fully
visible, whereas in other cases, parts of the pedestrian’s body
were masked out. Masking the complete pedestrian, and leaving
only positional information (bounding box), decreased human
accuracy markedly, showing the importance of augmented vi-
sual features for this prediction task.

We address the following questions in this paper.
• At the short prediction horizons typical of the traffic safety

context, can nonlinear models outperform linear models,
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or alternatively, can higher order Markov models outper-
form their first-order counterparts?

• Do augmented visual features (optical flow) improve path
prediction and action classification over the use of posi-
tional information only?

• How does measurement error (e.g., pedestrian localization
error and vehicle egomotion estimation error) affect the
results? Can the more complex models still maintain an
edge over the simpler ones?

In order to provide answers for the preceding questions, we
consider four approaches that differ in their modeling of dy-
namics and in their use of augmented visual features; together,
they cover a broad spectrum of possible approaches. In the cate-
gory of nonlinear first-order models with augmented visual fea-
tures, we propose a novel pedestrian path prediction approach,
based on Gaussian process dynamical models (GPDMs) [3] and
dense optical flow features (see Section III-A). An appealing
aspect of this approach is that a low-dimensional latent rep-
resentation is learned from the data, which takes into account
the process dynamics. In the category of nonlinear higher
order models with augmented visual features, we propose a
novel probabilistic hierarchical trajectory matching (PHTM)
approach, based on a low-dimensional motion representation
(see Section III-B). Finally, in the category of first-order
Markov models using positional information only, and mostly
as a baseline, we consider the popular Kalman filter (KF, linear
model) and its extension interacting multiple model KF (IMM
KF, mixture of linear models) [4] (see Section III-C).

Experimental results on real traffic data are given in
Section IV, with pedestrian image location obtained either from
ground truth (GT) (optionally corrupted with noise) or obtained
by a state-of-the-art pedestrian detection system. Several ex-
perimental cases are distinguished (pedestrian stopping versus
walking, egovehicle standing versus moving). A discussion of
the results, in terms of prediction performance and compu-
tational cost, is given in Section V. This paper concludes in
Section VI.

II. PREVIOUS WORK

Here, we discuss pedestrian motion model and path predic-
tion techniques. For an overview of vision-based pedestrian
detection, we refer to the surveys of Dollar et al. [5] and
Enzweiler and Gavrila [6].

One way to perform path prediction relies on closed-form
solutions for Bayesian filtering; in the KF [4], the current
state of a dynamic system can be propagated to the future by
means of the underlying linear dynamical model, without the
incorporation of new measurements. The same idea can be
applied to KF extensions to either multiple linear dynamical
models, e.g., the IMM KF [4], or to nonlinear models, e.g.,
the extended KF or the unscented KF (see [7] and [8] for
applications to pedestrian tracking).

An alternative approach to path prediction involves nonpara-
metric stochastic models. Possible trajectories are generated by
Monte Carlo simulations, taking into account the respective dy-
namical models. For example, Keller et al. [9] described an in-
tegrated vehicle safety system that combines sensing, situation

analysis, decision making, and vehicle control, to automatically
brake or evade for pedestrians. Collision detection assumes
constant motion from the last estimates of pedestrian position
and motion. Abramson and Steux [10] combined a constant
motion model with particle filtering. De Nicolao et al. [11]
distinguished lateral and longitudinal pedestrian velocities and
model these independently by a random walk. Wakim et al. [12]
modeled pedestrian motion by means of four states of a Markov
chain, corresponding to standing still, walking, jogging, and
running. Each state is associated with probability distribu-
tions of magnitude and direction of pedestrian velocity; the
state changes are controlled by various transition probabilities.
Recently, more complex pedestrian motion models have also
accounted for group behavior and spatial layout, e.g., entry/exit
points (see Antonini et al. [13] for a discussion). These latter
approaches, although interesting, are less relevant to the traffic
safety domain considered in this paper.

The limited amount of available training data precludes the
use of modeling approaches that compute joint probability dis-
tributions over time intervals explicitly. Indeed, most pedestrian
motion models consist of states that correspond to single time
steps and are first-order Markovian. This potentially limits their
expressiveness and precision. In contrast, Black and Jepson
[14] described an extension of particle filtering to incrementally
match trajectory models to input data. It is used for motion clas-
sification of 2-D gestures and expression. Sidenbladh et al. [15]
added an efficient tree search in the context of articulated 3-D
human pose recovery. Käfer et al. [16] applied this technique
to vehicle motion prediction, utilizing the quaternion-based
rotationally invariant longest common subsequence (QRLCS)
metric for trajectory matching. Keller et al. [17] combined
positional and optical flow features in the QRLCS matching
to perform pedestrian path prediction and action classification
(continue walking versus stopping at the curbside) from a
vehicle. One of their findings is that humans are still better
at this action classification task than the systems considered.
Following up on the analysis of pedestrian intention at the
curbside, Köhler et al. [18] addressed the continue-standing
versus starting-to-walk classification task, from a stationary
monocular camera. They combined a motion contour image
based histogram of oriented gradient (HOG)-like descriptor
with a linear support vector machine (SVM). Chen et al. [19]
proposed a multilevel prediction model, in which the higher
levels are long-term predictions based on trajectory clustering
matching, whereas the low level uses an autoregressive model
to predict the next time step.

A common assumption when dealing with human motion
is that measurements in a high-dimensional space can be rep-
resented in a low-dimensional nonlinear manifold. Nonlinear
dimensionality reduction methods allow learning the internal
model of the data (see van der Maaten et al. [20] for an overview
of techniques). It often depends on the data and the task at hand
(e.g., visualization and classification) which of the techniques
is best suited. Because measurements from human motions are
time dependent, it is desirable to consider the dependence of
the data over time. The Gaussian process latent variable model
[21], which is a generalization of the probabilistic principal
component analysis (PCA) [22], can be extended to model the
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Fig. 2. Overview of considered approaches for pedestrian path prediction.

dynamics of the data. This GPDM [3] allows for nonlinear
mapping from the latent space to the observation space, as
well as a smooth prediction of latent points. In particular, the
mapping (or prediction) of data points on the latent space makes
this technique interesting for tracking application. Urtasun et al.
[23] used a GPDM to track a small number of 3-D body
points that have been derived using an image-based tracker. The
system is trained using one gait cycle from six subjects and is
able to handle several frames of occlusions. Andriluka et al.
[24] used a dynamic part based limb detector in combina-
tion with a GPDM to allow robust detection and tracking in
complex scenes with many persons and long-term occlusions.
Raskin et al. [25] used a GPDM with an articulated model
of the human body in combination with an annealed particle
filter for tracking and action classification. Action classification
is realized by comparing observed sequences with template
sequences in latent space.

The contributions of this paper are as follows. We propose
two novel approaches that use augmented features derived
from dense optical flow for pedestrian path prediction, one
GPDM based (see Section III-A) and the other PHTM based
(see Section III-B). Furthermore, we present an experimental
study on pedestrian path prediction (including baseline KF
approaches), based on real video data from a vehicle and actual
sensor processing, as opposed to simulated data. Given the
documented benefit of dense stereo for pedestrian sensing [26],
we use it as input to our approaches. Section III-B is based on
our earlier work [17].

III. GENERAL FRAMEWORK

We compare four different approaches for pedestrian path
prediction, involving GPDMs, PHTM, KFs, and IMM KFs. For
an overview, see Fig. 2.

To allow meaningful comparisons among the systems, sev-
eral preprocessing components are set equal. Bounding boxes
containing pedestrians are supplied from the same detector
module. Dense disparity is computed using the semiglobal
matching stereo algorithm [27]. Pedestrian positions on the
ground plane are obtained by considering the midpoint of the
bounding box and the disparity computed over the part of
the bounding box that corresponds to the upper body (assum-
ing typical human proportions). The latter involves clustering
disparity values using mean shift [28] and selecting the cluster
with the largest weight; the median of the corresponding dis-
parity values provides the desired pedestrian distance.

Vehicle egomotion is compensated by rotation and transla-
tion of pedestrian positions to a global reference point using a

single-track vehicle model [29] and velocity and yaw rate mea-
surements from onboard sensor data. The two approaches that
use augmented visual features (GPDM and PHTM) compute
dense optical flow [30] over the bounding boxes provided by
the pedestrian detector; this flow is, subsequently, egomotion
compensated.

A. GPDM System

The first approach uses scene flow features describing the
lateral movement of the pedestrian derived from the dense
optical flow field and measured pedestrian distance in the world.
Feature dimensionality is reduced by means of a GPDM [3]
with a dynamic model in the latent space. To overcome the
absence of direct mapping from feature space to latent space,
the dynamic model is combined with a particle filter. GPDMs
that capture the walking and stopping movements of a pedes-
trian are separately trained. The learned dynamical models
provide optical flow fields at future time instants; future lateral
positions can be derived by integration. Longitudinal position
is independently estimated by means of a separate KF for each
action class (walking versus stopping). Weighting lateral and
longitudinal predictions using the probability of each action
model results in future pedestrian positions.

1) Feature Extraction: Given the lateral component from
dense optical flow and a pedestrian distance derived from dense
stereo, the lateral velocity of a pedestrian in the world is
computed.

With the pedestrian distance (as disparity disp), the hor-
izontal component of the optical flow field Vu, the camera
base width b, and the camera cycle time Δt, the lateral speed
vX(m/s) of each pixel is computed using

vX =
Vu · b

disp ·Δt
. (1)

To obtain only flow values located on the pedestrian body, a
mask image is generated from the thresholded disparity image,
and velocity values corresponding to the background are set to
zero. Applying this distance mask also adds rough pedestrian
contour information to the feature. Fig. 3 describes the feature
extraction steps.

For further use as a feature, this scene flow image is rescaled
to 32 × 16 pixel and concatenated to a feature vector yt ∈ R

D,
with p = 512. From the scene flow image (SFlowX), the lateral
velocity of the pedestrian can be directly extracted using the
median of velocity values located in the area of the pedestrian
upper body (see red box in Fig. 3).

2) Dynamical Model: We are interested in a low-
dimensional representation xt ∈ R

d of features yt ∈ R
D

from a pedestrian sequence with d < D. This dimensionality
reduction is realized using the GPDM [3], [23], [31], which
allows modeling the dynamics of the features over time t in the
low-dimensional space. For data in latent space xt, the relation
to the input yt can be described using

yt = g(xt;B) + ny,t (2)
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Fig. 3. Feature extraction using dense optical flow and roughly estimated
pedestrian contour from dense stereo.

with zero-mean Gaussian noise ny,t and mapping function
g with parameters B = [b1, b2, . . .]. Assuming a first-order
Markov model, the dynamics of the data in the latent space
x1, . . . ,xt, . . . ,xN can be described using

xt = f(xt−1;A) + nx,t (3)

with zero-mean Gaussian noise nx,t and mapping function f
with parameters A = [a1, a2, . . .].

In a Gaussian process framework, the parameters and basis
functions of f and g are marginalized out, and the positions of
the latent coordinates are optimized.

a) Latent mapping: In the GPDM framework, the con-
ditional density for the data Y = [y1, . . . ,yN ]T given latent
positions X = [x1, . . . ,xN ]T is described using

p(Y|X, β,W)

=
|W|N√

(2π)ND|KY |D
exp

(
−1

2
tr
(
K−1

Y YW2YT
))

(4)

with kernel matrix KY and kernel hyperparameters β =
{β1, β2, . . .} and W. To equally weight all the feature dimen-
sions, the scale parameter is set to W = I and is omitted in
the following equations. Entries in the kernel matrix are defined
using a kernel function (KY )i,j = kY (xi,xj). For our data, we
use a radial basis function (RBF) kernel with an additional noise
term, i.e.,

kY (xi,xj) = β1 exp

(
−β2

2
‖xi − xj‖2

)
+

δxi,xj

β3
. (5)

b) Dynamic mapping: The dynamics of the time series
data is incorporated using

p(X|α) = p(x1)√
(2π)(N−1)d|KX |d

× exp

(
−1

2
tr
(
K−1

X X2:NXT
2:N

))
(6)

with X2:N = [x2, . . . ,xN ]T , the kernel matrix KX constructed
from X1:N−1 = [x1, . . . , xN−1]

T with dimensionality (N −
1)× (N − 1) and entries (KX)i,j = kX(xi,xj). A combina-
tion of an RBF and a linear kernel with an additional noise is
used for the dynamics

kX(xi,xj)=α1 exp
(
−α2

2
‖xi−xj‖2

)
+α3x

T
i xj+α−1

4 δxi,xj

(7)

with kernel hyperparameters α = {α1, α2, . . .}.
c) Learning the GPDMs: Combining the latent and dy-

namics mapping defines the model

p(X,Y, α, β) = p(Y|X, β)p(X|α)p(α)p(β). (8)

Learning a GPDM requires finding the latent positions X and
kernel hyperparameters H = {α, β} with respect to the features
Y by minimizing the negative log posterior − ln p(X,H|Y).
Minimization can be done using a scaled conjugated gradient
(SCG) method [31]. This requires the inverse of the kernel ma-
trix with a complexity of O(N3) in each optimization iteration.
We select d = 3 as the latent space dimensionality.

It is difficult to learn a generic GPDM that captures large
variations in the data and different motions. Combining tra-
jectory data in which the pedestrian is walking and data in
which the pedestrian is stopping results in degenerated models.
Urtasun et al. [32] introduced additional constraints to prevent
the degeneration of models. Selecting the correct constraints
for a model that captures the walking and stopping motions
of a pedestrian for the used features is difficult, particularly
with noisy data. Additionally, the complexity when training
the model is increased. To avoid these problems, we train two
separate models. The first model is trained using trajectory data
segments in which pedestrians are walking. Stopping situations
are selected to train the second model. Because the beginning
of a stopping action is difficult to define, data from 20 frames
(0.91 s) before the stopping of the pedestrians is used. Examples
of the two models are plotted in Fig. 4.

d) Mean prediction: With the learned dynamic model, a
point x in the latent space is predicted, and the most likely
successor is derived using

μX(x) = XT
2:NK−1

X kX(x) (9)

with the vector kX(x) containing at the ith entry the results of
kX(x,xi) using training sample xi.

Fig. 4 illustrates this mean prediction of a point for several
frames on the low-dimensional space.
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Fig. 4. Traversal of a ( ) training trajectory through the ( ) learned latent
space and ( ) mean predictions of a ( ) point for 17 frames (0.77 s). Figures
depict (a) the walking case and (b) the stopping case. All available training
samples are shown.

e) Latent reconstruction: A point x in the latent space is
reconstructed using

μY(x) = YTK−1
Y kY(x). (10)

An example of the reconstructed scene flow feature is shown
in Fig. 5.

3) Multiple Model Particle Filter: The state of a pedestrian
at time t is described using φt = [xt,Xt], where xt ∈ Rd is a

Fig. 5. (Top row) Reconstructed optical flow based on current state (t = 0)
and state predictions (t = 2, . . . , 14) in low-dimensional latent space. (Bottom
row) Optical flow that is (will be) actually measured at the corresponding time
steps.

point in the low dimensional space and Xt the lateral pedestrian
position in the world. Given an observed motion feature yt and
observed lateral position Yt, the probability of a pedestrian state
φt is computed by

p(φt|yt,Yt)

= ηp(yt,Yt|φt)

∫
p(φt|φt−1)p(φt−1|yt−1,Yt−1)dφt−1 (11)

with normalization constant η. The probability p(φt|φt−1) of
observing a future state is computed from the GPDM latent
space mean prediction.

This distribution is represented by a set of particles {φ(s)
t :

s ∈ {1, . . . , S}} with corresponding weight w(s)
t that is prop-

agated using a particle filter. Particles are predicted using
the learned GPDM model with the predicted state φ̂

(s)
t =

[x̂
(s)
t , X̂ (s)

t ] with x̂
(s)
t = μX(x

(s)
t−1) + nx, and X̂ (s)

t = X (s)
t−1 +

sX (ŷ
(s)
t ,Δt) which computes the traveled distance from the

mean velocity derived from the reconstructed scene flow image
ŷ
(s)
t = μY(x̂

(s)
t ) and camera cycle time Δt. For each particle,

the noise term nx is randomly sampled from N (0, Id × σ2
nx
),

with an experimentally derived σnx
= 0.1.

Scene flow feature similarity is computed using the
Euclidean distance

df (y, ŷ) = ‖y − ŷ‖2. (12)

For the lateral position in the world, the distance dp(Y,X ) is
computed with

dp(Y,X ) = ‖Y − X‖2. (13)

Using the distances between the observed and predicted data,
the observation likelihood p(yt,Yt|φ(s)

t ) ∝ w
(s)
t is approxi-

mated using

w
(s)
t = exp

⎛
⎜⎝−

df

(
yt, ŷ

(s)
t

)2

2σ2
f

−
dp

(
Yt, X̂ (s)

t

)2

2σ2
p

⎞
⎟⎠ (14)

with an empirically estimated σf = 7 for the feature similarity
and σp = 0.06 for the deviation of the lateral position. The
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Fig. 6. Predicted speed derived from ( ) predicted optical flow and corre-
sponding ( ) measured optical flow speed for different prediction horizons.

updated φ
(s)
t is obtained from φ̂

(s)
t by reweighting the parti-

cle set.
For efficiency, an estimated state φT representing the pedes-

trian state in the future T = t+ΔT is derived from the
weighted mean x∗ of the particle set {φ(s)

t } and iteratively pre-
dicted using μX(x∗). From the reconstructed predicted scene
flow data (see Fig. 5), the pedestrian velocity in the future is
computed (see Fig. 6). Integrating over the velocity predictions
results in the predicted pedestrian position.

As mentioned in Section III-A2c, we trained two models for
the different pedestrian motions. Models are combined using
an interacting multiple model particle filter (MM-PF) similar
to [33]. For each model a fixed number of particles (S = 200)
is used to represent the state. From the set of particles Mi in
model i the model probability is derived using

γi(t) =

∑
φ
(s)
t ∈Mi

w(s)

∑
φ
(s)
t ∈M1

w(s) +
∑

φ
(s)
t ∈M2

w(s)
. (15)

Model probabilities are updated similar to the IMM-KF
scheme, described in Section III-C. The conditional probability
γij of a transition from model i to j is computed using

γij(t) =
Ψij · γi(t)∑2

k=1 Ψkj · γk(t)
(16)

with the state transition matrix Ψ.
We assume the lateral and longitudinal pedestrian dynamics

to be weakly dependent. Longitudinal state estimation is decou-
pled, and to each of the lateral models (GPDM), a KF with a
corresponding constant velocity (CV) or constant position (CP)
model is assigned to track the position. Longitudinal positions
siZ(Δt) are linearly predicted with the estimated velocity of
each filter. Mixing the lateral model predictions siX (Δt) and
the longitudinal KF prediction siZ(Δt) with the state transition
probabilities at t results in the pedestrian position

sX ,Z(Δt) =
2∑

i=1

γi ·
(
siX (Δt)
siZ(Δt)

)
. (17)

In the following, the approach using the GPDMs in com-
bination with scene flow features is abbreviated with SFlowX/
GPDM.

Fig. 7. Motion feature extraction in the PHTM-based system.

B. PHTM System

The second approach uses motion features involving a low-
dimensional histogram representation of optical flow. Measured
pedestrian positions and motion features are subsequently used
in a trajectory matching and filtering framework. From the filter
state, a future pedestrian position is derived by looking ahead on
matched trajectories of the training set.

1) Motion Features: The low-dimensional feature captures
flow variations on the pedestrian legs and upper body. In order
to operate from a moving vehicle, additional invariance to
pedestrian distance and vehicle motion is important. Features
are designed to allow bounding box localization errors from
a pedestrian detection system. Fig. 7 illustrates the feature
extraction steps. Flow vectors are normalized with the camera
cycle time to account for asynchronous capture and frame
drops. Flow vectors are further normalized with measurements
from dense stereo for invariance to different pedestrian dis-
tances. The resulting normalized motion field is used to extract
features given a bounding box detection and distance estimation
zped from a pedestrian detection system. To ensure that the
pedestrian is located in the box for all possible limb extensions
and slight localization errors, a bounding box aspect ratio of
4 : 3 is used. Motion vectors not belonging to the pedestrian
body are suppressed by using only values at a depth similar
to the estimated pedestrian distance. Remaining values in the
motion field are used to compute the median object motion and
extract orientation histograms. To capture motion differences
between torso and legs, the bounding box is split into upper
and lower subboxes. For each subbox, the median motion is
removed to compensate the pedestrian egomotion. Resulting
orientation vectors v = [vx, vy]

T are assigned to bins b ∈ [0, 7]
using their 360◦ orientation θ = atan2(vy, vx) and bin index
b = �θ/π/4�. Bin contributions are weighted by their magni-
tude, and resulting histograms are normalized with the number
of contributions. A feature vector is formed by concatenating
the histogram values and the median flow for the lower and
upper boxes. Dimensionality reduction of the feature vector is
achieved by applying PCA. The first three PCA dimensions
with the largest eigenvalue are used as final histogram of
orientation motion (HoM) features.

2) Trajectory Matching: A pedestrian trajectory Ω is repre-
sented using the ordered tuples Ω = ((ω1, t1), . . . , (ωN , tN )).
For every time stamp ti, the pedestrian state ωi consists of
the lateral and longitudinal positions of the pedestrian and
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Fig. 8. (a) Test trajectory with a history of length H containing position and
feature information for every entry is matched to the training database. Re-
sulting matching position and similarity distance to trajectories in the training
database describe a possible trajectory course and class label. (b) Tree repre-
sentation of the trajectory training database. Leaf nodes represent trajectory
snippets of fixed length. Similar trajectories are searched by traversing the tree
using the trajectory descriptors for every level.

additional features extracted from optical flow [see Fig. 8(a)].
For path prediction, it is possible to compare an observed test
trajectory with a history of H pedestrian states to each trajec-
tory in a training database using a similarity measure. With
the QRLCS metric [16], the optimal translation and rotation
parameters to superimpose two trajectories are derived. The
distance distQRLCS(Ωi,Ωj) ∈ [0, 1] between two trajectories
is given by the number of possible assignments determined
by an ε area around each pedestrian state, normalized by the
number of pedestrian states. Fig. 8(a) illustrates this comparison
process.

We replace this exhaustive search by a probabilistic search
framework [15], [16]. A set of overlapping subtrajectories
(snippets, e.g., [34]) with a fixed history of pedestrian states
is created from a training database. Information of the snippet
position in the origin trajectory and successor snippets is kept
for later use. By piling the features for each state in a snippet
into a description vector and applying the PCA method to these
vectors, their principal dimensions can be ordered according
to the largest eigenvalue. The resulting transformed description
vector c is used to build a binary search tree. For each level l,
the snippet is assigned to the left or right subtree depending
on the sign of cl. Given N training snippets, the depth of
the search tree, i.e., n, is O(log(N)). Fig. 8(b) illustrates this
search tree.

Given a trajectory Ω1:t, the probability of the state φt is
computed by

p(φt|Ω1:t) = ηp(Ω1:t|φt)

∫
p(φt|φt−1)p(φt−1|Ω1:t−1)dφt−1

(18)

with a normalization constant η. The distribution p(φt|Ω1:t) is
represented by a set of samples or particles {φ(s)

t }, which are
propagated in time using a particle filter [14]. Each particle φ(s)

t

represents a snippet describing a pedestrian state with a history
and an assigned likelihood. Our transition model p(φt|φt−1)
is determined by a probabilistic search in the binary tree.
Particle prediction is performed by a probabilistic search in the
constructed binary tree and a lookup for the successor snippet
in the training database. The distribution p(Ω1:t|φt) represents
the likelihood that the measurement trajectory Ω1:t can be
observed given the current state. In the context of particle filters,
this value corresponds to the weight of a particle and is ap-
proximated using w(s) = 1 − distQRCLS for each particle φ

(s)
t .

An estimated state φ
(s)
T representing the pedestrian state in

the future T = t+ΔT can be derived by looking ahead on
the associated origin trajectory for the current state φ

(s)
t . This

results in many hypotheses, which are compensated using a
weighted mean shift algorithm [28] with a Gaussian kernel and
weights w(s) ∼ p(φ

(s)
T |Ω1:t). At the final predicted state φ∗

T , the
cluster center with the highest accumulated weight is selected.

The trajectory database contains two classes of trajectory
snippets: the class Cs, in which the pedestrian is stopping, and
the class Cw, in which the pedestrian continues walking. For
the predicted object state φ∗

T derived using cluster members

L = {φ(l)
t } and the corresponding weight w(l), the stopping

probability can be approximated using

p(Cs|L) ≈
∑

φ
(l)
t ∈Cs w

(l)

∑
φ
(l)
t ∈Cs w

(l) +
∑

φ
(l)
t ∈Cw w(l)

. (19)

In the following, the PHTM approach using HoM features is
abbreviated with HoM/Traj.

C. KF-Based Systems

1) KF: As a third approach, a linear KF [4] is used. The
state X̂ of the filter is modeled as

X̂ = [ z x vz vx ]
T

with z/x being the longitudinal/lateral position of the pedes-
trian to the vehicle and vz/vx being its absolute longitudinal/
lateral velocity in the world. Pedestrian positions are pseu-
domeasurements provided by the stereo pedestrian detection
component, as described at the beginning of this section. A
CV model is assumed as a pedestrian motion model. Using this
model means that all deviations from a constant pedestrian mo-
tion have to be captured as process noise. With the assumption
that a pedestrian moving at 1.8 m/s can stop in 1 s, we select a
process noise parameter q = 1.8 for the filter.

2) IMM-KF: The fourth approach extends the previous KF
with an additional CP model; this way, the IMM-KF [4] is
realized. The basic idea is to maintain a KF for each possible
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motion model with state x̂j(t) and model probability γj(t).
This means that a steady walking pace is represented using a
filter with the CV model with process noise parameter qCV.
For nonmoving pedestrians, the CP model with qCP applies.
Each iteration consists of three steps: interaction, filtering, and
mixing. The interaction step computes the mixing probability
γij from the current model probability γj and the state tran-
sition probability Ψij [see (16)]. From the mixing probability,
the mixed state mean x̂0j(t) and the covariance matrix P̂0j(t)
are computed as initial input for each filter in the filtering step
using

x̂0j(t) =

2∑
i=1

x̂i(t)γij(t). (20)

For the computation of P̂0j(t), see [4]. In the filtering step,
a KF predict/update step is done using the mixed state mean
x̂0j(t) and covariance matrix P̂0j(t) derived in the interaction
step. Given the likelihood function Λj(t+ 1) = N (rj(t+ 1),
Sj(t+ 1)) with residuum rj(t+ 1) and residual covariance
Sj(t+ 1), the updated probabilities γj(t+ 1) are computed
using

γj(t+ 1) =
1
c
Λj(t+ 1)

2∑
i=1

Ψijγi(t) (21)

with normalization factor c. An approximation of the resulting
mixture model is then computed in the mixing step using

x̂(t+ 1) =
2∑

i=1

x̂i(t+ 1)γi(t+ 1). (22)

For the following evaluation, qCV = 0.21 and qCP = 0.41
have been derived from the set of training trajectories, with
respect to the positions minimum root-mean-square error
(RMSE). The matrix Ψ describing the transition probabilities
between the CV and CP models has been experimentally de-
rived from the available training data Ψ = [0.999, 0.001, 0.001,
0.999]. Choosing larger values for the model transitions results
in more frequent undesired switches, particularly with noisy
measurements. The IMM-KF is said to be nonsensitive to
improperly selected transition probabilities [35].

IV. EXPERIMENTS

Video data of two scenarios (see Fig. 1) were recorded using
a stereo camera system (baseline 30 cm, 22 fps) mounted
behind the windshield of a vehicle. The first scenario features
the stopping of a pedestrian at the curbstone. In the second
scenario, the pedestrian crosses the street. In both scenarios,
the pedestrian was not occluded. In some test runs, the vehicle
is stationary, whereas in others, the vehicle is moving at speeds
of 20–30 km/h. The data set involved four different pedestrians
in three different locations at a distance range of 5–34 m to the
vehicle. Table I provides some further statistics on the data set.
Fig. 9 illustrates some test images.

The GT locations of the pedestrians in the world were ob-
tained by manual labeling the pedestrian shapes in the images.
The median disparity value on the pedestrian upper body and

TABLE I
NUMBER OF SEQUENCES WITH DIFFERENT PEDESTRIAN

AND VEHICLE ACTIONS IN OUR DATA SET

Fig. 9. Example images from the data set showing the pedestrian action.
Images show the labeled (left) stopping or (right) walking moment.

the center foot point of the shape is used to obtain the longi-
tudinal and lateral positions on the ground plane. In terms of
alignment along the time axis, for each trajectory in which the
pedestrian is stopping, the moment of the last placement of the
foot is labeled as the stopping moment. The time-to-stop (TTS)
value counts the number of frames until this event; frames
earlier to the stopping event have positive TTS values; frames
after the stopping event have negative TTS values. In sequences
in which the pedestrian continues walking, the closest point to
the curbstone (with closed legs) is labeled. Analogous to the
TTS definition, the latter is called the time-to-curb (TTC) value.

Performance evaluation is done using input data with dif-
ferent noise characteristics with regard to the image bounding
box positions. Two-dimensional bounding boxes derived from
manually labeled pedestrian shapes (termed label box) are
used as the most accurate input data for feature extraction
and localization; it reflects the case of an “ideal” pedestrian
detector. We further consider the case in which these ideal
2-D bounding boxes are perturbed by uniform noise; we add
up to 10% of the original height of the bounding boxes to their
height and center (the resulting bounding boxes are termed
jittered). Finally, we consider 2-D bounding boxes provided
by a state-of-the-art HOG/linSVM pedestrian detector [36]
(termed system detections). Hereby, detection “gaps” are filled
in by means of a standard correlation tracker. Considering data
with artificial noise allows abstracting away from the noise bias
of a particular pedestrian detector. As we will see shortly, the
overall noise level artificially added is realistic, in the sense that
it is similar to that of a state-of-the-art detector.

The lateral and longitudinal position errors on the ground
plane for different input data are summarized in Table II. In
these experiments, we compared with a smoothed version of
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TABLE II
MEAN DEVIATION (IN METERS) OF THE PEDESTRIAN POSITION

ON THE GROUND PLANE (LATERAL AND LONGITUDINAL)
COMPARED WITH THE SMOOTHED GT DATA

the GT ground plane positions. GT positions from walking tra-
jectories, in which we are certain that the pedestrian is moving
with an approximately constant velocity (−40 ≤ TTC ≤ 40),
were fitted with a curvilinear model, minimizing pedestrian
velocity and yaw changes by nonlinear least squares. For the
stopping trajectories, smoothing was only applied to the cases
in which the pedestrian is standing (TTS ≤ 0), by simple aver-
aging. Note that smoothed GT was only used for the purpose
of Table II. In the path prediction experiments, comparisons
involved the nonsmoothed GT. Following observations can be
made from Table II. As expected, the longitudinal error is larger
than the lateral error due to stereo vision characteristics. Adding
aforementioned uniform noise on 2-D bounding boxes results
in degradation of positional accuracy of about 10 and 50 cm
in lateral and longitudinal directions, respectively. Positional
errors are similar for the artificial noise and real detector case.

A. Parameter Settings and Evaluation Setup

We compare the four approaches using equal parameter
settings, whenever possible. Lateral and longitudinal noise
parameters for the KF and IMM-KF and longitudinal noise
parameters for tracking the distance of the SFlowX/GPDM
are selected from Table II. Process noise parameters and state
transition matrix were heuristically derived (see Section III-C).
The same state transition matrix is used for the MM-PF of the
SFlowX/GPDM system and the IMM-KF.

The analysis of walking trajectories showed an average gait
cycle of 10–14 frames for different pedestrians. The trajectory
database for the HoM/Traj contains subtrajectories, generated
in a sliding window fashion, with a fixed length of ten frames.
For test trajectories, a history of 14 frames is used to capture
gait cycle variations. Approximating the current probability
density is done with S = 400 particles and a tree search devia-
tion parameter of β = 0.05. The mean shift position procedure
operates with a kernel width value h = 0.1.

Training and testing data have been processed using leave-
one-out cross-validation. This means that one sequence is used
for testing and the remaining training sequences are used to
learn the GPDM models SFlowX/GPDM or for search tree
generation (HoM/Traj).

B. Pedestrian Path Prediction

We are interested in the ability of each system to predict
future pedestrian positions accurately. Tables III and IV list
ground plane localization accuracy (i.e., longitudinal and lateral
dimensions combined) at different prediction horizons, for each

system. Localization accuracy is measured in terms of the
mean and standard deviation of the per-sequence RMSE. Per-
sequence RMSE is determined by comparing system predic-
tions at various time horizons with the GT, when the pedestrian
is inside the frame range [20, −10], when frame 0 denotes the
manually labeled TTS/TTC moment. This corresponds to an
evaluation time range of [0.91, −0.45] s around the TTS/TTC
event. Pedestrian positions are predicted up to 17 frames
(0.77 s) into the future. Tables III and IV list the results for
walking and stopping trajectories, respectively. Results are fur-
ther differentiated based on whether the own vehicle is standing
or moving or whether all data are used (cf., Table I).

On walking scenarios (see Table III), all approaches show
a similar prediction performance when pedestrian bounding
boxes are set precise (label box). In the more realistic case of
inaccurate image localization (jittered box) and moving vehicle,
we see that HoM/Traj, unlike the other approaches, shows
no performance degradation and thus gains a slight edge. We
attribute this to the robustness of trajectory matching to outliers
in the longitudinal dimension.

On stopping scenarios (see Table IV), in which the constant
velocity assumption is violated, incorporation of motion fea-
tures leads to a path prediction performance advantage of up
to a factor of 2 for HoM/Traj and SFlowX/GPDM compared
with the KF-based variants (e.g., jittered data and vehicle stand-
ing and moving cases). As before, the trajectory matching of
HoM/Traj shows added robustness to noise caused by bounding
box position errors and vehicle egomotion.

In the intelligent vehicle pedestrian safety context, the lateral
component of the localization error is particularly relevant; it
determines whether the pedestrian enters the vehicle driving
corridor and a collision potentially occurs. Fig. 10 lists the
mean lateral localization error at various time offsets to the
labeled TTS/TTC moment (jittered data and vehicle standing
and moving cases). Separate plots are shown depending on the
prediction horizon (0 or 17 frames) and whether the pedestrian
is walking or stopping. We observe no significant performance
difference between walking trajectories [see Fig. 10(a) and (c)].
For stopping scenarios [see Fig. 10(b) and (d)], the advantage
of the additional motion model of the IMM-KF versus the KF
becomes visible (in Table IV, this advantage was averaged away
over the frame range [20, −10], due to the inclusion of time
instants still involving walking). Stopping of the pedestrian
leads to a switch to the CP model and a lower localization
error compared with the KF with CV model. Fig. 10 also shows
that HoM/Traj and SFlowX/GPDM are more quickly able to
adjust to the change in the pedestrian motion, resulting in a
lower lateral localization error than the KF-based approaches.
Fig. 11 illustrates the distribution of the lateral prediction
error difference between IMM-KF and HoM/Traj for stopping
trajectories. Performance differences are clearly visible close to
the stopping event TTS = 0.

Results using tracked detections from a state-of-the-art
HOG/linSVM pedestrian detector [36] are listed in Table V. For
this experiment, we used a subset of 7 walking and 13 stopping
trajectories (five trajectories with a moving vehicle) in which
the pedestrian detector had a decent performance in the first
place (detection gaps no longer than ten frames consecutively).
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TABLE III
MEAN COMBINED LONGITUDINAL AND LATERAL RMSE (IN METERS) FOR WALKING TRAJECTORIES

AND DIFFERENT PREDICTION HORIZONS (FRAMES)

TABLE IV
MEAN COMBINED LONGITUDINAL AND LATERAL RMSE (IN METERS) FOR STOPPING TRAJECTORIES

AND DIFFERENT PREDICTION HORIZONS (FRAMES)

We observe that using actual system detections, rather than
simulated detections, does not change the performance ranking
of the approaches considered (compare Table V with the entries
in Tables III and IV, in which the vehicle is standing and
moving). In fact, performance with actual system detections
is similar to that obtained with noise-perturbed GT jittered
data; this is not surprising given similar per-frame localization
measurement error (cf., Table II).

C. Pedestrian Action Classification

We also tested the ability of various systems to classify
pedestrian actions, i.e., whether the pedestrian will cross or
not. Fig. 12 illustrates the performance of each system on
stopping and walking test trajectories; depicted is the estimated
probability of stopping, as a function of TTS or TTC. For the
SFlowX/GPDM and HoM/Traj systems, this was achieved by
means of (15) and (19), respectively. For IMM-KF, stopping
was estimated by means of the probability of the CP model,
following (21).

To put the performance of the systems in context, we also
evaluated human performance. Video data were presented to
several test subjects using graphical user interfaces, where play-
back was automatically stopped at five different TTC or TTS
moments (20, 11, 8, 5, and 3). For each run, the test subjects had
to decide whether the pedestrian will stop at the curbstone or
cross the street and provide a probability (i.e., confidence) using
a slider ranging from 0 to 1. Sequence and playback stopping
point were randomly selected before being presented to the test
subjects to avoid the effect of reidentification.

In Fig. 12, on walking trajectories, all systems show a
low and relatively constant stopping probability. On stopping
trajectories, all systems initially start with a low stopping
probability, since stopping is preceded by walking. However,

within a dozen frames before the stopping event, the stopping
probability increases more markedly.

Class membership is determined at each time instant of an
input trajectory assigned by thresholding the estimated stopping
probability (cf., Fig. 12). Based on the training set, we selected
for each system and for the human group a threshold that
minimizes its classification error (i.e., stopping classified as
walking and vice versa) over all sequences and time instants.
Fig. 13 illustrates the resulting classification accuracy over time
using these “optimal” thresholds. As can be seen, the humans
outperform the various automatic systems at this action classi-
fication task. The humans reach accuracy of 0.8 in classifying
the correct pedestrian action about 570 ms before the event.
This accuracy is only reached about 230 ms before the event by
the newly developed SFlowX/GPDM and HoM/Traj systems,
which use augmented visual features. The baseline IMM-KF
system does worst, reaching the corresponding accuracy only
about 90 ms before the event.

V. DISCUSSION

Table V indicates that the proposed more advanced methods
for pedestrian path prediction (SFlowX/GPDM or HoM/Traj)
can achieve more accurate path prediction than basic ap-
proaches (linear KF or IMM extension thereof). The associated
benefit, in terms of reduction of the combined lateral and
longitudinal position error, is 10–50 cm at a time horizon of
0–17 frames (up to 0.77 s) around the stopping event. Fig. 10(d)
indicates that a 50-cm improvement in lateral position estima-
tion is reached at several time instants. Tables III and IV also
suggest that the vehicle egomotion compensation is done rea-
sonably but not perfectly. Further benefits can be obtained when
localizing the pedestrian more accurately and improving upon
the vehicle egomotion compensation. Comparing the columns
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Fig. 10. Mean lateral localization error at each time step for jittered data
and vehicle standing and moving (walking versus stopping trajectories, pre-
diction horizon 0 versus 17 frames). (a) Pedestrian walking, prediction time
0 frames. (b) Pedestrian stopping, prediction time 0 frames. (c) Pedestrian
walking, prediction time 17 frames. (d) Pedestrian stopping, prediction time
17 frames.

Fig. 11. Distribution of the lateral prediction error difference (IMM-KF-
HoM/Traj). Results for the jittered data, prediction horizon of 17 frames and
stopping trajectories.

TABLE V
MEAN COMBINED LONGITUDINAL AND LATERAL RMSE (IN METERS)

FOR STOPPING AND WALKING TRAJECTORIES USING SYSTEM DETECTIONS

WITH DIFFERENT PREDICTION HORIZONS (FRAMES)

Fig. 12. Estimated probability of stopping over time for (a) walking
and (b) stopping test trajectories (averaged over all respective sequences).
(a) Pedestrian walking. (b) Pedestrian stopping.

Fig. 13. Classification accuracy of the different systems over time. Results for
the jittered data.

“vehicle standing, label box, 17” (ideal situation) and “vehicle
moving, jittered box, 17” (currently achievable situation) shows
that position prediction can be improved by approximately
15–81 cm for the various systems.

These findings are encouraging in terms of the expected
benefits that can be achieved, when integrating more sophis-
ticated path planning in pedestrian safety systems that perform
emergency vehicle maneuvers (braking, steering).
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We now turn to computational cost issues. The popularity
of the simple linear KF can be explained due to its relative
effectiveness and its low computational requirements. Although
the computational cost doubles for the two-process model
IMM-KF, it remains moderate compared with the HoM/Traj and
SFlowX/GPDM approaches. For the latter, the cost of motion
feature extraction needs to be accounted for first. Furthermore,
for the HoM/Traj approach, a prediction step requires traversing
the search tree for each particle and looking up the successor
snippet. Computational costs to predict a snippet is linear in the
depth of the search tree. To incorporate new measurements, the
QRCLS distance to each particle has to be computed to update
the particle weights. Looking ahead pedestrian position requires
applying the mean shift procedure to the predicted particle po-
sitions to find the main mode. Main computational costs of the
SFlowX/GPDM can be subdivided into the costs of predicting
a GPDM latent space position and reconstructing the feature to
apply the particle weight update. To predict a single particle,
the mean prediction on the latent space has to be applied
[see (9)]. Because the first part of the formula (XT

2:NK−1
X ) can

be precomputed, the online costs for a latent space prediction
result from evaluating the kernel function kX(x) between the
particle latent position x and all inducing variables. Similarly,
reconstructing the feature requires evaluation of (10) with a
precomputed YTK−1

Y and evaluation of the kernel function
kY(x). Costs for an update and prediction of a particle are
limited by the number of inducing variables.

Using an unoptimized MATLAB implementation on a
2.53-GHz central processing unit, the path prediction 17 frames
into the future requires, on average, 0.003 s for KF and 0.017 s
for IMM-KF. The MATLAB version of the HoM/Traj approach
with an optimized version of the trajectory matching and mean
shift procedure in C requires 0.6 s. Without code optimiza-
tion, the SFlowX/GPDM approach requires, on average, 5.4 s
for the prediction. Processing times for both HoM/Traj and
SFlowX/GPDM can be much improved by special hardware
(i.e., graphics processing unit, digital signal processor, and
field-programmable gate array) by parallelizing the particle
computation.

In terms of scalability, learning a GPDM quickly becomes
unfeasible for larger data sets (for example, ≥ 1000 samples)
without an approximation method. The fully independent train-
ing conditional (FITC) [37] method reduces the complexity
from O(N3) for the SCG method [31] (cf., Section III-A3) to
O(k2N), when k is the number of data points that remain in the
computation of the covariance matrix. Our full data set contains
approximately 1700 training samples, and we set k = 100.
When using the FITC approximation with a fixed number of
inducing variables k, the online computational costs do not
increase when extending the size of the training set. Without an
approximation method, kernel evaluations between all samples
in the training set have to be applied. Regarding scalability with
the number of pedestrian motion patterns considered, train-
ing a single model containing different motion patterns leads
to degenerated models on our data set. Degenerated models
showed an insufficient latent space prediction performance. Al-
though methods exist to prevent model degeneration [32] when
using sequences with a large variety of motion patterns, the

computational complexity during training increases. Extending
the SFlowX/GPDM system with additional motion patterns
requires training separate GPDMs for each motion pattern. In
the online case, the computational costs linearly increase in the
number of models.

Since the HoM/Traj system is an instance-based learning
approach using a probabilistic search tree, different motion
patterns can be added to the training set without complication.
Adding additional snippets to the training set leads to an
increase in the depth of the binary search tree. Online costs
to predict the state of the particle filter are thus sublinear
(logarithmic) in the number of training samples.

VI. CONCLUSION

We have considered four approaches (SFlowX/GPDM,
HoM/Traj, KF, and IMM-KF) for stereo-vision-based pedes-
trian path prediction from a vehicle. Two scenarios were con-
sidered: in one, the pedestrian walking toward the curbside,
lateral to the vehicle driving direction, would stop; whereas in
the other, the pedestrian would continue walking.

Experiments indicated similar path prediction performance
of the four approaches on walking motion, with near-linear
dynamics. During stopping, however, the newly proposed ap-
proaches (SFlowX/GPDM or HoM/Traj), with nonlinear and/or
higher order models and augmented motion features, achieved
a more accurate (longitudinal and lateral) position prediction
of 10–50 cm at a time horizon of 0–0.77 s around the stop-
ping event. During stopping, a 50-cm improvement in lat-
eral position prediction was reached at several time instants.
Further benefits are possible when localizing the pedestrian
more accurately and improving upon the vehicle egomotion
compensation: We obtained improvements in lateral position
prediction of 15–81 cm for the various systems.

These are encouraging results, indicating that more advanced
pedestrian path prediction approaches can make a real dif-
ference, when integrated in the next-generation active pedes-
trian safety systems that perform emergency vehicle maneuvers
(braking, steering). However, more work is necessary on im-
proving pedestrian localization, enlarging the set of pedestrian
motion patterns considered and increasing the size of the data
set, before these benefits can materialize.
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